(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Derivation of Adjusted Line Parameters for Equivalent
Model
In order to get the same ABCD parameters as the distributed parameter line, the nominal
line impedance
and admittance
need to be adjusted such that:
![{\displaystyle \left[{\begin{matrix}A&C\\B&D\end{matrix}}\right]=\left[{\begin{matrix}\left(1+{\frac {{\boldsymbol {Z'}}{\boldsymbol {Y'}}}{2}}\right)&{\boldsymbol {Z'}}\\\\{\boldsymbol {Y'}}\left(1+{\frac {{\boldsymbol {Z'}}{\boldsymbol {Y'}}}{4}}\right)&\left(1+{\frac {{\boldsymbol {Z'}}{\boldsymbol {Y'}}}{2}}\right)\end{matrix}}\right]=\left[{\begin{matrix}\cosh({\boldsymbol {\gamma }}l)&{\boldsymbol {Z}}_{c}\sinh({\boldsymbol {\gamma }}l)\\\\{\frac {1}{{\boldsymbol {Z}}_{c}}}sinh({\boldsymbol {\gamma }}l)&\cosh({\boldsymbol {\gamma }}l)\end{matrix}}\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3ee0f15e9f1a3f8dc9742dfbb364838fb7e3c630)
Where
and
are the adjusted line impedance and admittance respectively
is the length of the line (m)
is the propagation constant (
)
is the characteristic impedance (
)
We now want to determine the adjusted impedance and admittance in terms of their original values so that we can easily convert a nominal
line into an equivalent
line.
Firstly, it should be noted that the uppercase parameters represent total values whereas the lowercase parameters are per-length values, i.e. the relationship between upper and lower cases parameters is as follows:


(Note that the conductance G is assumed to be 0 in the nominal
model, hence
S/m)
So let's consider the C term:
![{\displaystyle =\left[{\sqrt {\frac {\boldsymbol {z}}{\boldsymbol {y}}}}\sinh({\boldsymbol {\gamma }}l)\right]\left({\frac {{\boldsymbol {z}}l}{{\boldsymbol {z}}l}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4171a3a538806f238846d215bcb623de45c9be33)
![{\displaystyle =\left[{\frac {\sinh({\boldsymbol {\gamma }}l)}{{\sqrt {\boldsymbol {zy}}}l}}\right]{\boldsymbol {z}}l}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6e27bd66e41ecb9158d811254212da290d00d77c)
![{\displaystyle =\left[{\frac {\sinh({\boldsymbol {\gamma }}l)}{{\boldsymbol {\gamma }}l}}\right]{\boldsymbol {Z}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2a998cd62ee0265867e8ef55ffa3fa0c7c64415b)
Similarly, consider the A term:

Re-arranging the above, we get:

Substituting in
:

Using the hyperbolic half-angle identity
:

![{\displaystyle =\left[{\frac {\tanh \left({\frac {{\boldsymbol {\gamma }}l}{2}}\right)}{\sqrt {\frac {\boldsymbol {z}}{\boldsymbol {y}}}}}\right]\left({\frac {{\boldsymbol {y}}l}{{\boldsymbol {y}}l}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cf6b5c76ab9f66485909b8de28737cd7fde54b6e)
![{\displaystyle =\left[{\frac {\tanh \left({\frac {{\boldsymbol {\gamma }}l}{2}}\right)}{{\sqrt {\boldsymbol {zy}}}l}}\right]{\boldsymbol {y}}l}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c2413d726bbbbae2b177dd65479d8937d8d5bd9f)
![{\displaystyle =\left[{\frac {\tanh \left({\frac {{\boldsymbol {\gamma }}l}{2}}\right)}{{\boldsymbol {\gamma }}l}}\right]{\boldsymbol {Y}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f2ac299de4d1ba4d1d3bdd598306976631477932)
![{\displaystyle =\left[{\frac {\tanh \left({\frac {{\boldsymbol {\gamma }}l}{2}}\right)}{\frac {{\boldsymbol {\gamma }}l}{2}}}\right]{\frac {\boldsymbol {Y}}{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b41856e82d3ecdf216f9b0f6f9867a3122152b5f)
Alternative Representation of Adjusted Line Parameters
From the above section, we derived the following adjusted line parameters for the equivalent
line:
![{\displaystyle {\boldsymbol {Z'}}=\left[{\frac {\sinh({\boldsymbol {\gamma }}l)}{{\boldsymbol {\gamma }}l}}\right]{\boldsymbol {Z}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cf763b46d7f4ebe98c0f5571ffc21a6375481d2f)
![{\displaystyle {\frac {\boldsymbol {Y'}}{2}}=\left[{\frac {\tanh \left({\frac {{\boldsymbol {\gamma }}l}{2}}\right)}{\frac {{\boldsymbol {\gamma }}l}{2}}}\right]{\frac {\boldsymbol {Y}}{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bce83319486bb351d490e5b2306d866bdd67720b)
Knowing that the expression for characteristic impedance can be manipulated as follows:


Or using similar logic:

Using the above expressions, we can represent
in an alternative manner as follows:
![{\displaystyle =\left[{\frac {\sinh({\boldsymbol {\gamma }}l)}{{\frac {\boldsymbol {z}}{{\boldsymbol {Z}}_{c}}}l}}\right]{\boldsymbol {z}}l}](https://wikimedia.org/api/rest_v1/media/math/render/svg/56c47ca7302092d02e5ee9bf6c52048fd7280752)

Similarly, we can represent
as follows:
