(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Derivation of Voltage Equation
The general solution to the transmission line wave equations are:


Where
is the velocity of propagation (m/s).
and
are arbitrary current functions of time.
and
are arbitrary voltage functions of time.
The Laplace Transform of the above equations are:
... Equ. (1)
... Equ. (2)
Recall the Telegrapher's equation for current:

Taking the Laplace Transform of this equation, we get:
... Equ. (3)
Substituting Equations (1) and (2) into Equ. (3):
![{\displaystyle {\frac {\partial }{\partial x}}\left[I^{+}(s)e^{-{\frac {sx}{v}}}+I^{-}(s)e^{\frac {sx}{v}}\right]=-sC\left[V^{+}(s)e^{-{\frac {sx}{v}}}+V^{-}(s)e^{\frac {sx}{v}}\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/887cdc825b20a2659a4660c05407cf600311f2aa)
We can differentiate the left-hand side:
![{\displaystyle {\frac {s}{v}}\left[-I^{+}(s)e^{-{\frac {sx}{v}}}+I^{-}(s)e^{\frac {sx}{v}}\right]=-sC\left[V^{+}(s)e^{-{\frac {sx}{v}}}+V^{-}(s)e^{\frac {sx}{v}}\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fe33afa4d90efd37187d64e0ff85b4b70ee21d73)
Equating the
and
terms on both sides, we get the following pair of equations:


Solving for voltage yields the following:
... Equ. (4)
... Equ. (5)
Where
is the characteristic impedance (Ohms)
We can use the above equations to re-write the voltage equation of Equ. (2) in terms of current as follows:
![{\displaystyle V(x,s)=Z_{c}\left[I^{+}(s)e^{-{\frac {sx}{v}}}-I^{-}(s)e^{\frac {sx}{v}}\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/835b2dbd5748532d69dfd91ae999d4a3c53c4be5)
Finally, taking the inverse Laplace Transform of the equation above, we get:
![{\displaystyle V(x,t)=Z_{c}\left[i^{+}(x-vt)-i^{-}(x+vt)\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dbf43663b38d993aaa6ac5e01eb0f321d39d9413)