Difference between revisions of "Synchronous Machine Models"
(Created page with "This page describes the most common synchronous machine models used in stability studies. == Nomenclature == The standard machine parameters are defined as follows: * <math...") |
m |
||
| Line 237: | Line 237: | ||
: <math> \omega_0 = \omega_s \,</math> | : <math> \omega_0 = \omega_s \,</math> | ||
| − | [[Category: | + | [[Category:Modelling/Analysis]] |
Revision as of 13:42, 16 November 2020
This page describes the most common synchronous machine models used in stability studies.
Nomenclature
The standard machine parameters are defined as follows:
- is the armature resistance (pu)
- is the armature reactance (pu)
- is the d-axis synchronous reactance (pu)
- is the q-axis synchronous reactance (pu)
- is the d-axis transient reactance (pu)
- is the q-axis transient reactance (pu)
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle X''_{d}\,} is the d-axis subtransient reactance (pu)
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle X''_{q}\,} is the q-axis subtransient reactance (pu)
- is the d-axis transient open loop time constant (s)
- is the q-axis transient open loop time constant (s)
- is the d-axis subtransient open loop time constant (s)
- is the q-axis subtransient open loop time constant (s)
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle H\,} is the machine inertia constant (MWs/MVA)
- is an additional damping constant (pu)
Note that per-unit values are usually expressed on the machine's MVA base.
6th Order (Sauer-Pai) Model
6th order synchronous machine model based on the book:
Sauer, P.W., Pai, M. A., "Power System Dynamics and Stability", Stipes Publishing, 2006
Stator magnetic equations:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\dot {E'_{q}}}={\frac {1}{T'_{d0}}}\left[V_{fd}-E'_{q}-(X_{d}-X'_{d})\left(I_{d}-\gamma _{d2}\psi ''_{d}-(1-\gamma _{d1})I_{d}+\gamma _{d2}E'_{q}\right)\right]\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\dot {E'_{d}}}={\frac {1}{T'_{q0}}}\left[-E'_{q}-(X_{q}-X'_{q})\left(I_{q}-\gamma _{q2}\psi ''_{q}-(1-\gamma _{q1})I_{q}-\gamma _{q2}E'_{d}\right)\right]\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \psi _{d}=-X''_{d}I_{d}+\gamma _{d1}E'_{q}+(1-\gamma _{d1})\psi ''_{d}\,}
where
Stator electrical equations (neglecting electromagnetic transients):
Equations of motion:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\dot {\delta }}=\Omega _{s}(\omega -\omega _{s})\,}
Initialisation:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle I_{d0}=|{\boldsymbol {I}}_{a0}|\sin(\delta _{0}-\psi _{0})\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle I_{q0}=|{\boldsymbol {I}}_{a0}|\cos(\delta _{0}-\psi _{0})\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V_{d0}=|{\boldsymbol {V}}_{t0}|\sin(\delta _{0}-\theta _{0})\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \psi ''_{d0}=E'_{q0}-(X'_{d}-X_{a})I_{d0}\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V_{fd0}=E'_{q0}+(X_{d}-X'_{d})\left(I_{d0}-\gamma _{d2}\psi ''_{d0}-(1-\gamma _{d1})I_{d0}+\gamma _{d2}E'_{q0}\right)\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle P_{m}=P_{e0}=(V_{d0}+R_{a}I_{d0})I_{d0}+(V_{q0}+R_{a}I_{q0})I_{q0}\,}
6th Order (Anderson-Fouad) Model
6th order synchronous machine model based on the book:
Stator magnetic equations:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\dot {E'_{q}}}={\frac {1}{T'_{d0}}}\left[V_{fd}-(X_{d}-X'_{d})I_{d}-E'_{q}\right]\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle E''_{q}-V_{q}=R_{a}I_{q}+X''_{d}I_{d}\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle E''_{d}-V_{d}=R_{a}I_{d}-X''_{q}I_{q}\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \psi _{d}=E''_{q}-X''_{d}I_{d}\,}
Stator electrical equations (neglecting electromagnetic transients):
Equations of motion:
Initialisation:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle I_{q0}=|{\boldsymbol {I}}_{a0}|\cos(\delta _{0}-\phi _{0})\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V_{fd0}=|{\boldsymbol {E}}_{q0}|+(X_{d}-X_{q})I_{d0}\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle E''_{q0}=E'_{q0}-(X'_{d}-X''_{d})I_{d0}\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle E''_{d0}=E'_{d0}+(X'_{q}-X''_{q})I_{q0}\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle P_{m}=P_{e0}=(V_{d0}+R_{a}I_{d0})I_{d0}+(V_{q0}+R_{a}I_{q0})I_{q0}\,}
4th Order (Two-Axis) Model
Stator magnetic equations:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\dot {E'_{q}}}={\frac {1}{T'_{d0}}}\left[V_{fd}-(X_{d}-X'_{d})I_{d}-E'_{q}\right]\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \psi _{d}=E'_{q}-X'_{d}I_{d}\,}
Stator electrical equations (neglecting electromagnetic transients):
Equations of motion:
Initialisation:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V_{d0}=|{\boldsymbol {V}}_{t0}|\sin(\delta _{0}-\theta _{0})\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle E'_{d0}=V_{d0}+R_{a}I_{d0}-X'_{q}I_{q0}\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V_{fd0}=E'_{q0}+(X_{d}-X'_{d})I_{d0}\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle P_{m}=P_{e0}=(V_{d0}+R_{a}I_{d0})I_{d0}+(V_{q0}+R_{a}I_{q0})I_{q0}\,}
2nd Order (Classical) Model
Stator equations:
Equations of motion:
Initialisation:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\boldsymbol {E}}_{q0}={\boldsymbol {V}}_{t0}+(R_{a}+jX'_{d})\times {\boldsymbol {I}}_{a0}\,}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle P_{m}=P_{e0}=\left({\frac {1}{R_{a}+jX'_{d}}}\right)|{\boldsymbol {V}}_{t0}||{\boldsymbol {E}}_{q0}|\sin(\delta _{0}-\theta _{0})\,}