Synchronous Machine Models

From Open Electrical
Revision as of 13:42, 16 November 2020 by Jules (talk | contribs)
Jump to navigation Jump to search

This page describes the most common synchronous machine models used in stability studies.

Nomenclature

The standard machine parameters are defined as follows:

  • is the armature resistance (pu)
  • is the armature reactance (pu)
  • is the d-axis synchronous reactance (pu)
  • is the q-axis synchronous reactance (pu)
  • is the d-axis transient reactance (pu)
  • is the q-axis transient reactance (pu)
  • is the d-axis subtransient reactance (pu)
  • Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle X''_{q}\,} is the q-axis subtransient reactance (pu)
  • is the d-axis transient open loop time constant (s)
  • is the q-axis transient open loop time constant (s)
  • is the d-axis subtransient open loop time constant (s)
  • is the q-axis subtransient open loop time constant (s)
  • Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle H\,} is the machine inertia constant (MWs/MVA)
  • is an additional damping constant (pu)

Note that per-unit values are usually expressed on the machine's MVA base.

6th Order (Sauer-Pai) Model

6th order synchronous machine model based on the book:

Sauer, P.W., Pai, M. A., "Power System Dynamics and Stability", Stipes Publishing, 2006

Stator magnetic equations:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\dot {E'_{d}}}={\frac {1}{T'_{q0}}}\left[-E'_{q}-(X_{q}-X'_{q})\left(I_{q}-\gamma _{q2}\psi ''_{q}-(1-\gamma _{q1})I_{q}-\gamma _{q2}E'_{d}\right)\right]\,}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \psi _{d}=-X''_{d}I_{d}+\gamma _{d1}E'_{q}+(1-\gamma _{d1})\psi ''_{d}\,}

where

Stator electrical equations (neglecting electromagnetic transients):

Equations of motion:

Initialisation:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle I_{d0}=|{\boldsymbol {I}}_{a0}|\sin(\delta _{0}-\psi _{0})\,}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle I_{q0}=|{\boldsymbol {I}}_{a0}|\cos(\delta _{0}-\psi _{0})\,}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \psi ''_{d0}=E'_{q0}-(X'_{d}-X_{a})I_{d0}\,}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V_{fd0}=E'_{q0}+(X_{d}-X'_{d})\left(I_{d0}-\gamma _{d2}\psi ''_{d0}-(1-\gamma _{d1})I_{d0}+\gamma _{d2}E'_{q0}\right)\,}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle P_{m}=P_{e0}=(V_{d0}+R_{a}I_{d0})I_{d0}+(V_{q0}+R_{a}I_{q0})I_{q0}\,}

6th Order (Anderson-Fouad) Model

6th order synchronous machine model based on the book:

Anderson, P. M., Fouad, A. A., "Power System Control and Stability", Wiley-IEEE Press, New York, 2002

Stator magnetic equations:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\dot {E'_{q}}}={\frac {1}{T'_{d0}}}\left[V_{fd}-(X_{d}-X'_{d})I_{d}-E'_{q}\right]\,}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle E''_{d}-V_{d}=R_{a}I_{d}-X''_{q}I_{q}\,}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \psi _{d}=E''_{q}-X''_{d}I_{d}\,}

Stator electrical equations (neglecting electromagnetic transients):

Equations of motion:

Initialisation:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V_{fd0}=|{\boldsymbol {E}}_{q0}|+(X_{d}-X_{q})I_{d0}\,}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle E''_{q0}=E'_{q0}-(X'_{d}-X''_{d})I_{d0}\,}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle P_{m}=P_{e0}=(V_{d0}+R_{a}I_{d0})I_{d0}+(V_{q0}+R_{a}I_{q0})I_{q0}\,}

4th Order (Two-Axis) Model

Stator magnetic equations:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\dot {E'_{q}}}={\frac {1}{T'_{d0}}}\left[V_{fd}-(X_{d}-X'_{d})I_{d}-E'_{q}\right]\,}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \psi _{d}=E'_{q}-X'_{d}I_{d}\,}

Stator electrical equations (neglecting electromagnetic transients):

Equations of motion:

Initialisation:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V_{fd0}=E'_{q0}+(X_{d}-X'_{d})I_{d0}\,}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle P_{m}=P_{e0}=(V_{d0}+R_{a}I_{d0})I_{d0}+(V_{q0}+R_{a}I_{q0})I_{q0}\,}

2nd Order (Classical) Model

Stator equations:

Equations of motion:

Initialisation:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\boldsymbol {E}}_{q0}={\boldsymbol {V}}_{t0}+(R_{a}+jX'_{d})\times {\boldsymbol {I}}_{a0}\,}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle P_{m}=P_{e0}=\left({\frac {1}{R_{a}+jX'_{d}}}\right)|{\boldsymbol {V}}_{t0}||{\boldsymbol {E}}_{q0}|\sin(\delta _{0}-\theta _{0})\,}