Talk:Single-Phase Line Models
Footnotes
Derivation of Adjusted Line Parameters for Equivalent Model
In order to get the same ABCD parameters as the distributed parameter line, the nominal line impedance and admittance need to be adjusted such that:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left[{\begin{matrix}A&C\\B&D\end{matrix}}\right]=\left[{\begin{matrix}\left(1+{\frac {{\boldsymbol {Z'}}{\boldsymbol {Y'}}}{2}}\right)&{\boldsymbol {Z'}}\\\\{\boldsymbol {Y'}}\left(1+{\frac {{\boldsymbol {Z'}}{\boldsymbol {Y'}}}{4}}\right)&\left(1+{\frac {{\boldsymbol {Z'}}{\boldsymbol {Y'}}}{2}}\right)\end{matrix}}\right]=\left[{\begin{matrix}\cosh({\boldsymbol {\gamma }}l)&{\boldsymbol {Z}}_{c}\sinh({\boldsymbol {\gamma }}l)\\\\{\frac {1}{{\boldsymbol {Z}}_{c}}}sinh({\boldsymbol {\gamma }}l)&\cosh({\boldsymbol {\gamma }}l)\end{matrix}}\right]\,}
Where and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\boldsymbol {Y'}}\,}
are the adjusted line impedance and admittance respectively
- is the length of the line (m)
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\boldsymbol {\gamma }}={\sqrt {\boldsymbol {zy}}}} is the propagation constant ()
- is the characteristic impedance ()
We now want to determine the adjusted impedance and admittance in terms of their original values so that we can easily convert a nominal line into an equivalent line.
Firstly, it should be noted that the uppercase parameters represent total values whereas the lowercase parameters are per-length values, i.e. the relationship between upper and lower cases parameters is as follows:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\boldsymbol {Z}}={\boldsymbol {z}}l}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\boldsymbol {Y}}={\boldsymbol {y}}l}
(Note that the conductance G is assumed to be 0 in the nominal model, hence Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\boldsymbol {y}}=j\omega C} S/m)
So let's consider the C term:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle C={\boldsymbol {Z'}}={\boldsymbol {Z}}_{c}\sinh({\boldsymbol {\gamma }}l)}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle =\left[{\sqrt {\frac {\boldsymbol {z}}{\boldsymbol {y}}}}\sinh({\boldsymbol {\gamma }}l)\right]\left({\frac {{\boldsymbol {z}}l}{{\boldsymbol {z}}l}}\right)}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle =\left[{\frac {\sinh({\boldsymbol {\gamma }}l)}{{\sqrt {\boldsymbol {zy}}}l}}\right]{\boldsymbol {z}}l}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle =\left[{\frac {\sinh({\boldsymbol {\gamma }}l)}{{\boldsymbol {\gamma }}l}}\right]{\boldsymbol {Z}}}
Similarly, consider the A term:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle A=\left(1+{\frac {{\boldsymbol {Z'}}{\boldsymbol {Y'}}}{2}}\right)=\cosh({\boldsymbol {\gamma }}l)\,}
Re-arranging the above, we get:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\boldsymbol {Y'}}{2}}={\frac {\cosh({\boldsymbol {\gamma }}l)-1}{\boldsymbol {Z'}}}}
Substituting in :
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\boldsymbol {Y'}}{2}}={\frac {\cosh({\boldsymbol {\gamma }}l)-1}{{\boldsymbol {Z}}_{c}\sinh({\boldsymbol {\gamma }}l)}}}
Using the hyperbolic half-angle identity Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \tanh {\frac {x}{2}}={\frac {\cosh x-1}{\sinh x}}}
:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\boldsymbol {Y'}}{2}}={\frac {\tanh \left({\frac {{\boldsymbol {\gamma }}l}{2}}\right)}{{\boldsymbol {Z}}_{c}}}}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle =\left[{\frac {\tanh \left({\frac {{\boldsymbol {\gamma }}l}{2}}\right)}{\sqrt {\frac {\boldsymbol {z}}{\boldsymbol {y}}}}}\right]\left({\frac {{\boldsymbol {y}}l}{{\boldsymbol {y}}l}}\right)}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle =\left[{\frac {\tanh \left({\frac {{\boldsymbol {\gamma }}l}{2}}\right)}{{\sqrt {\boldsymbol {zy}}}l}}\right]{\boldsymbol {y}}l}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle =\left[{\frac {\tanh \left({\frac {{\boldsymbol {\gamma }}l}{2}}\right)}{{\boldsymbol {\gamma }}l}}\right]{\boldsymbol {Y}}}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle =\left[{\frac {\tanh \left({\frac {{\boldsymbol {\gamma }}l}{2}}\right)}{\frac {{\boldsymbol {\gamma }}l}{2}}}\right]{\frac {\boldsymbol {Y}}{2}}}
Alternative Representation of Adjusted Line Parameters
From the above section, we derived the following adjusted line parameters for the equivalent line:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\boldsymbol {Z'}}=\left[{\frac {\sinh({\boldsymbol {\gamma }}l)}{{\boldsymbol {\gamma }}l}}\right]{\boldsymbol {Z}}}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\boldsymbol {Y'}}{2}}=\left[{\frac {\tanh \left({\frac {{\boldsymbol {\gamma }}l}{2}}\right)}{\frac {{\boldsymbol {\gamma }}l}{2}}}\right]{\frac {\boldsymbol {Y}}{2}}}
Knowing that the expression for characteristic impedance can be manipulated as follows:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\boldsymbol {Z}}_{c}={\sqrt {\frac {\boldsymbol {z}}{\boldsymbol {y}}}}}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle ={\frac {\boldsymbol {z}}{\sqrt {\boldsymbol {zy}}}}}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle ={\frac {\boldsymbol {z}}{\boldsymbol {\gamma }}}}
Or using similar logic:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\boldsymbol {Z}}_{c}={\frac {\boldsymbol {\gamma }}{\boldsymbol {y}}}}
Using the above expressions, we can represent in an alternative manner as follows:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\boldsymbol {Z'}}=\left[{\frac {\sinh({\boldsymbol {\gamma }}l)}{{\boldsymbol {\gamma }}l}}\right]{\boldsymbol {z}}l}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle ={\boldsymbol {Z}}_{c}\sinh({\boldsymbol {\gamma }}l)}
Similarly, we can represent Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\boldsymbol {Y'}}{2}}} as follows: